

Review Paper 2

Cuckoo Search Optimization for Global Maximum Power Point Tracking in Partially Shaded Photovoltaic Systems: A Review

Md Tarique Hasnain¹, Devendra Sharma², M.S.Dash³, Saurabh Gupta⁴, Vasant Acharya⁵

imtariqueshah@gmail.com¹, devendrasharma798@gmail.com², malaya_rec@rediffmail.com³, saurabh.gupta.sgsits@gmail.com⁴, vasantacharyatitc@gmail.com⁵

¹MTech Scholar, Department of Electrical and Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

²Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

³Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

⁴Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

⁵Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

Abstract

Solar photovoltaic (PV) systems are pivotal in the global energy transition, yet their efficiency is significantly hampered by partial shading conditions (PSCs). PSCs induce multiple peaks on the power-voltage (P-V) characteristic curve, making it challenging for conventional Maximum Power Point Tracking (MPPT) algorithms to identify the true global maximum power point (GMPP). This review paper explores the application of the Cuckoo Search (CS) algorithm as an advanced metaheuristic solution to overcome these limitations. The CS algorithm, inspired by avian brood parasitism and Lévy flights, demonstrates superior capabilities in reliably tracking the GMPP with enhanced convergence speed and reduced oscillations compared to traditional and some other metaheuristic methods. This paper details the mechanisms of PSCs, the shortcomings of conventional MPPT, the principles of CS, its advantages in PV applications,

current implementation challenges, and promising future research directions, including hybridization and advanced control strategies.

Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Partial Shading Conditions (PSC), Cuckoo Search (CS), Global Maximum Power Point (GMPP), Renewable Energy.

Introduction

Overview of Solar Photovoltaic Systems and MPPT

Solar photovoltaic (PV) technology has emerged as a cornerstone of sustainable energy, converting sunlight directly into electricity through the photovoltaic effect, a principle first demonstrated in 1954. Modern PV systems span a wide range of applications, from small-scale residential setups to extensive utility-scale power plants, increasingly contributing to the electric grid's energy supply due to their growing cost-competitiveness and environmental benefits. The fundamental unit, the solar cell, is integrated into modules and arrays that produce direct current (DC) electricity, subsequently converted to alternating current (AC) by inverters for grid compatibility.

The efficiency of commercial PV modules has steadily improved, now approaching 25% for state-of-the-art designs. However, the power output of PV systems is inherently sensitive to environmental variables, such as solar irradiance and temperature fluctuations. To ensure that PV systems consistently deliver their maximum possible power output under these varying conditions, Maximum Power Point Tracking (MPPT) algorithms are essential. MPPT systems dynamically adjust the electrical impedance presented to the PV array, compelling it to operate at or near its peak power point on the P-V curve.

The Challenge of Partial Shading Conditions (PSCs)

Despite the advancements in PV technology and MPPT, significant operational hurdles persist, particularly under partial shading conditions (PSCs). PSCs arise when external obstructions, such

as nearby buildings, trees, or transient clouds, cast shadows on portions of a PV module or array. This non-uniform illumination severely diminishes the system's overall power generation. More critically, PSCs distort the P-V characteristic curve, transforming it from a single-peak profile to one featuring multiple power peaks, including several local maxima (LMPPs) and a single, true global maximum (GMPP).

Conventional MPPT algorithms, which are typically designed for uniform irradiance scenarios, often fail to differentiate between LMPPs and the GMPP. This deficiency leads them to become trapped at sub-optimal local peaks, resulting in substantial power losses and a significant reduction in the PV system's overall efficiency. The inherent challenge of PV systems operating under real-world conditions, where partial shading is a frequent occurrence, underscores the necessity for advanced MPPT solutions. Simply installing PV systems is insufficient; sophisticated control mechanisms are required to maximize energy yield, especially in dynamic environments. This fundamental need drives ongoing research into more advanced MPPT techniques.

Introduction to Metaheuristic Algorithms for MPPT

To overcome the inherent limitations of traditional MPPT methods under PSCs, the research community has increasingly explored metaheuristic optimization techniques. These algorithms, inspired by natural phenomena, are designed to efficiently navigate complex, multi-modal search spaces. The Cuckoo Search (CS) algorithm, developed by Yang and Deb in 2009, has emerged as a particularly promising technique. Its effectiveness stems from a strategic balance of exploration and exploitation, drawing inspiration from the unique brood parasitism behavior of certain cuckoo species. The evolution of MPPT algorithms directly reflects the increasing complexity of PV operating environments. As PV deployment expanded into urban areas, where shading is prevalent, the shortcomings of simpler MPPT methods became evident. This directly spurred the development and adoption of sophisticated metaheuristic algorithms like CS, demonstrating a clear cause-and-effect relationship between environmental challenges and algorithmic innovation in PV technology.

Scope and Structure of the Review

This paper provides a comprehensive review of the Cuckoo Search algorithm's application in maximizing solar PV output under partial shading conditions. It will detail the mechanisms and effects of PSCs, the inherent limitations of conventional MPPT techniques, the underlying principles of the CS algorithm, its demonstrated advantages in this specific domain, the current challenges faced in its implementation, and promising avenues for future research.

Literature Review: Partial Shading Effects and Conventional MPPT Limitations

Characteristics of PV Systems Under Partial Shading

P-V Curve Multi-Peak Phenomenon

When a PV system is subjected to partial shading, its power-voltage (P-V) characteristic curve undergoes a profound transformation. Instead of the single, distinct peak typically observed under uniform illumination, multiple power peaks emerge, consisting of several local maxima (LMPPs) and a single, unique global maximum (GMPP). The number of these peaks often correlates directly with the number of PV modules experiencing different levels of shading within the array. This phenomenon arises because shaded cells or modules, receiving inadequate solar irradiation, can enter a reverse-biased region, effectively acting as a load rather than a power source. This dissipates power generated by the unshaded cells, leading to a complex and non-linear P-V curve.

Hot-Spot Formation and Mitigation

A critical consequence of partial shading is the potential for "hot-spot" formation. When a cell or module is shaded, the current produced by the unshaded parts of the array can be forced through the shaded, high-resistance region. This leads to significant power dissipation in the shaded area, causing its temperature to rise dramatically, potentially reaching 130-150°C or higher. Such extreme temperatures can cause irreversible damage to the PV module, including discoloration, interconnection failures, cell cracks, delamination, and a loss of electrical insulation.

To mitigate this, bypass diodes are commonly connected in anti-parallel across groups of PV cells or modules. These diodes provide an alternative, low-resistance path for the current to bypass the shaded sections, thereby protecting them from thermal damage. However, the activation of these bypass diodes is precisely what contributes to the creation of multiple peaks in the P-V curve under PSCs. This situation presents a classic engineering trade-off: while bypass diodes are crucial for PV module protection, they inadvertently complicate MPPT by creating a multi-modal power landscape. This suggests that future solutions may need to consider integrated designs that holistically address both protection and MPPT challenges, possibly through optimized array configurations or more sophisticated control strategies that anticipate these multi-modal curves.

Limitations of Traditional MPPT Algorithms Under PSCs

Traditional MPPT algorithms, such as Perturb & Observe (P&O) and Incremental Conductance (IC), are widely adopted in PV systems due to their simplicity, ease of implementation, and low cost. Under uniform irradiance conditions, these methods are generally effective in tracking the single maximum power point.

However, their performance deteriorates significantly under partial shading conditions. P&O, for example, is highly susceptible to getting trapped at local maxima on the multi-peak P-V curve, failing to reach the true global maximum power point. This leads to substantial power loss and a drastic reduction in system efficiency. Similarly, while Incremental Conductance is often considered more accurate than P&O, it can still exhibit oscillations and erratic behavior under rapidly changing atmospheric conditions and presents higher computational complexity. The simplicity of conventional MPPT algorithms, while advantageous in stable conditions, becomes their Achilles' heel under dynamic, complex conditions like partial shading. Their fixed logic or local search strategies cause them to become "stuck" at local maxima, highlighting a fundamental limitation: algorithms designed for simpler problems cannot adequately address increased system complexity without significant modification or replacement. This drives the need for metaheuristic solutions that inherently possess global search capabilities.

Fundamentally, neither P&O nor IC possesses the global search capabilities required to reliably distinguish between local and global peaks when multiple maxima are present.

Cuckoo Search Algorithm: Principles and Application to MPPT

Fundamentals of Cuckoo Search Optimization (CSO)

Biological Inspiration and Lévy Flights

The Cuckoo Search (CS) algorithm, introduced by Yang and Deb in 2009, is a powerful nature-inspired metaheuristic optimization technique. Its core inspiration derives from the obligate brood parasitism exhibited by certain cuckoo species, where they lay their eggs in the nests of other host birds. A distinctive feature of CS is its use of Lévy flights for generating new solutions. Lévy flights represent a type of random walk characterized by a series of small steps interspersed with occasional, larger jumps. This pattern facilitates an efficient and balanced exploration of the search space, enabling the algorithm to escape local optima and discover global solutions more effectively than simpler random walks. The "random walk" nature of Lévy flights in CS is not truly random but a strategic balance between exploration and exploitation, making it well-suited for multi-modal optimization like GMPPT. This characteristic is crucial for MPPT under partial shading, where multiple local peaks exist, as it allows the algorithm to effectively escape local optima and explore new regions of the search space.

Core Optimization Process

The CS algorithm commences by initializing a population of host nests, each representing a potential solution to the optimization problem. In each iteration, a new cuckoo egg (candidate solution) is generated using the Lévy flight mechanism. The fitness (quality) of this new solution is then evaluated and compared with that of a randomly selected existing nest. If the new cuckoo

solution proves superior, it replaces the existing nest's solution. To further enhance diversity and prevent premature convergence, a certain fraction of the host nests (determined by a probability P_a , typically set to 0.25) are "discovered" by the host bird and subsequently abandoned. These abandoned nests are then replaced by new randomly generated solutions, simulating the host bird constructing a new nest elsewhere. This iterative process of generating, evaluating, and replacing solutions enables the algorithm to converge towards the optimal solution by continuously enhancing the quality of the solutions within the population.

Application of Cuckoo Search for MPPT in PV Systems

In the context of MPPT for PV systems, the Cuckoo Search algorithm is typically employed to determine the optimal duty cycle of a DC-DC converter (such as a boost converter or SEPIC converter) that interfaces the PV array with the load. The objective function for the CS algorithm is the power output of the PV array, which it aims to maximize. By iteratively adjusting the duty cycle based on the CS principles and Lévy flights, the algorithm effectively scans the complex, multi-peak P-V curve generated under partial shading conditions to identify and track the Global Maximum Power Point (GMPP). This direct control of the converter's duty cycle, often eliminating the need for an additional PID controller, can simplify the overall control system implementation.

Advantages of Cuckoo Search MPPT Under Partial Shading

Enhanced Global Maximum Power Point (GMPP) Tracking Capability

One of the most significant advantages of Cuckoo Search MPPT is its superior ability to accurately track the Global Maximum Power Point (GMPP), even under complex partial shading conditions that result in multiple power peaks on the P-V curve. Unlike conventional methods like Perturb & Observe (P&O) or Incremental Conductance (IC) that frequently become trapped in local maxima, CS's inherent global search mechanism, facilitated by Lévy flights, allows it to effectively explore the entire P-V curve and consistently identify the true MPP. The inherent global search capability of CS directly translates into superior performance metrics (speed,

efficiency, stability) under partial shading, making it a strong candidate for practical deployment. This is because conventional methods fail under PSCs as they are designed for single-peak landscapes and get trapped in local optima. CS, by design, incorporates Lévy flights that enable effective exploration of multi-modal landscapes, which is a fundamental difference in search strategy directly leading to its ability to find the GMPP, resulting in higher efficiency and reduced power losses.

Superior Convergence Speed and Efficiency

Cuckoo Search MPPT typically demonstrates fast convergence speeds, often tracking the MPP within a remarkably short timeframe of 100-250 milliseconds under various environmental changes. Simulation and experimental studies consistently report high tracking efficiencies for CS, with average efficiencies approaching 99.98%. This makes it significantly more efficient than P&O (e.g., as low as 82.54% in severe shading) and often comparable to or even faster than other metaheuristic algorithms like Particle Swarm Optimization (PSO).

Reduced Oscillations and Power Losses

Cuckoo Search is known for exhibiting less oscillation around the maximum power point compared to traditional methods like P&O, which often suffer from significant fluctuations and associated power losses. The power loss in steady state due to MPP mismatch for CS can be remarkably low, reported to be as minimal as 0.000008%. This characteristic contributes significantly to higher overall energy yield, improved system stability, and enhanced reliability of the PV system. The low oscillation characteristic further enhances its practical appeal by ensuring stable operation, which is a direct consequence of its algorithmic design addressing the specific problem of multi-peak P-V curves.

Table 1: Comparative Performance of MPPT Algorithms under Partial Shading Conditions

Algorithm	GMPP Tracking Capability	Convergence Speed (s)	Tracking Efficiency (%)	Steady-State Oscillations	Computational Complexity	Key Advantage (under PSC)	Key Limitation (under PSC)
Perturb & Observe (P&O)	Poor (traps at LMPP)	0.25 (uniform), 0.07-0.2 (LMPP)	82.54-90.15 (PSC)	High	Low	Simplicity	Local optima trapping, High oscillations
Incremental Conductance (IC)	Moderate (can oscillate)	Faster than P&O	Not specified	Medium (can oscillate)	Medium	Accuracy	Oscillations, Erratic behavior under rapid changes, Higher computational burden
Particle Swarm Optimization (PSO)	Good	0.84-1.15	99.97	Low	Medium	Global Search	Slower convergence than CS, Parameter sensitivity
Cuckoo Search (CS)	Excellent	0.42-0.65 (0.1-0.25)	99.98	Low/Negligible	Medium	Fast Global Search, Low	Parameter tuning, Computational burden

Algorithm	GMPP Tracking Capability	Convergence Speed (s)	Tracking Efficiency (%)	Steady-State Oscillations	Computational Complexity	Key Advantage (under PSC)	Key Limitation (under PSC)
						oscillations	for real-time
Hybrid CS-STSMC	Excellent	0.27-0.58	100	Negligible	High	High efficiency, Speed, Robustness	Higher computational complexity, Design complexity

*Note: Convergence speeds and efficiencies may vary based on specific implementation, PV system configuration, and shading patterns. Data for CS convergence speed includes a range from general CS performance and specific examples like 100-250ms where available. Hybrid CS-STSMC data is from a specific proposed algorithm and may not be representative of all hybrid CS methods.

Recent Challenges and Limitations

Computational Burden and Real-Time Implementation Considerations

While the Cuckoo Search algorithm offers significant performance advantages, its computational demands can pose a challenge, particularly for real-time hardware implementation in practical PV systems. Although CS is generally considered relatively fast and efficient for solving large-scale optimization problems in a theoretical context, translating this to low-cost, embedded microprocessors commonly used in PV inverters can be difficult. The need for high processing power and sufficient computational time to adapt to rapidly changing environmental conditions can lead to increased hardware costs and potentially decreased sampling frequency, impacting dynamic performance. This implies a trade-off between algorithmic sophistication and the

practical constraints of cost-effective hardware, a challenge that requires innovative solutions in hardware design or more computationally efficient algorithm variants.

Sensitivity to Parameter Tuning

Like many other metaheuristic algorithms, the performance of the Cuckoo Search algorithm is sensitive to the proper selection and tuning of its control parameters, such as the probability of alien eggs discovered (Pa) and the step size (α). Suboptimal parameter choices can lead to issues such as slow convergence, premature convergence to local optima, or increased oscillations around the GMPP. The process of fine-tuning these parameters often requires extensive simulation and empirical testing for different PV system configurations and shading patterns, adding to the complexity of real-world deployment. This parameter sensitivity highlights a practical hurdle for widespread adoption, as it demands a deeper understanding and calibration effort from system designers.

Mismatch Losses and Hot-Spot Persistence

Despite the use of bypass diodes to mitigate hot-spot formation, partial shading still leads to mismatch losses within the PV array, reducing the overall power generated below the sum of individual module potentials. While CS MPPT aims to find the GMPP, the fundamental power loss due to the non-uniform current distribution across shaded and unshaded modules remains. Furthermore, although bypass diodes offer protection, frequent or persistent shading events can still induce thermal stress and potential long-term degradation of modules and diodes, even with MPPT. This suggests that while MPPT maximizes extraction from the available power curve, it does not eliminate the inherent power reduction caused by shading or the long-term reliability concerns associated with hot-spots. Addressing these issues fully may require integrated approaches that combine advanced MPPT with optimized PV array configurations or module-level power electronics.

Future Directions

Hybridization with Other Optimization and Control Strategies

A prominent future direction for Cuckoo Search MPPT involves its hybridization with other metaheuristic algorithms or advanced control strategies. Combining CS with algorithms like Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), or Genetic Algorithms (GA) can leverage the strengths of each, potentially leading to faster convergence, improved accuracy, and enhanced robustness while mitigating individual weaknesses. For instance, hybrid approaches like CS-STSMC (Cuckoo Search with Super-Twisting Sliding Mode Controller) have demonstrated superior performance in terms of precision, convergence speed, and resilience by effectively combining global search with robust voltage tracking. Such hybrid strategies can offer a more comprehensive solution to the complex, dynamic nature of partial shading.

Real-Time Implementation and Hardware Optimization

Advancing the real-time implementation of CS MPPT algorithms remains a critical area for future research. This involves developing more computationally efficient variants of CS that can run on low-cost microcontrollers without sacrificing performance. Research could focus on optimizing the algorithm's structure to reduce processing power requirements and memory footprint, making it more suitable for embedded systems. Furthermore, exploring specialized hardware accelerators or field-programmable gate arrays (FPGAs) could enable faster execution speeds and lower power consumption, facilitating wider practical deployment. The goal is to bridge the gap between theoretical performance and practical applicability, ensuring that the benefits of CS MPPT are fully realized in commercial PV systems.

Integration with Advanced PV System Architectures

Future research should also explore the integration of CS MPPT with novel PV system architectures, such as module-level power electronics (MLPEs) or reconfigurable PV arrays. MLPEs, including micro-inverters and DC optimizers, can perform MPPT at the individual module level, inherently mitigating the effects of partial shading and hot-spots by allowing each module to operate independently at its MPP. Integrating CS algorithms into these distributed

MPPT systems could further enhance their performance, particularly in highly dynamic and complex shading scenarios. Similarly, applying CS to control reconfigurable PV arrays, which can dynamically alter their series-parallel connections to optimize output under shading, presents a promising avenue for maximizing energy harvest. This involves moving beyond simply tracking the global peak to actively reshaping the PV array's characteristics for improved performance.

Conclusion

Partial shading conditions present a significant challenge to the efficient operation of solar photovoltaic systems, leading to complex multi-peak power-voltage characteristics and substantial energy losses when conventional Maximum Power Point Tracking (MPPT) algorithms are employed. The Cuckoo Search (CS) algorithm, a nature-inspired metaheuristic, has emerged as a robust and effective solution for navigating these complex power landscapes. Its inherent global search capability, driven by Lévy flights, allows it to consistently identify the true Global Maximum Power Point (GMPP), overcoming the limitations of traditional methods that often become trapped in local maxima.

CS MPPT demonstrates superior performance in terms of convergence speed, high tracking efficiency (approaching 99.98%), and significantly reduced oscillations around the maximum power point, leading to higher overall energy yield and improved system stability. However, challenges remain in optimizing its computational burden for low-cost real-time hardware implementation and managing its sensitivity to parameter tuning. Future research is poised to address these limitations through the development of hybrid CS algorithms, which combine its strengths with other optimization and control strategies, and through dedicated efforts in hardware optimization and integration with advanced PV system architectures like module-level power electronics. As solar energy continues its expansion, the continued refinement and practical deployment of advanced MPPT solutions like Cuckoo Search will be critical for maximizing the output and reliability of PV systems under real-world conditions.

References

J. Ahmed and Z. Salam, "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," *Applied Energy*, vol. 119, pp. 118-130, Apr. 2014.

A. M. Eltamaly, H. M. H. Farh, and M. S. Al Saud, "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," *Energies*, vol. 14, no. 4, p. 953, Feb. 2021.

C. H. Hussain Basha, V. Bansal, C. Rani, R. M. Brisilla, and S. Odofin, "Development of Cuckoo Search MPPT Algorithm for Partially Shaded Solar PV SEPIC Converter," in *Advances in Intelligent Systems and Computing*, Singapore: Springer, 2020, pp. 727-735.

Z. Bel Hadj Salah *et al.*, "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," *Energies*, vol. 16, no. 12, p. 9753, Jun. 2023.

A. M. Eltamaly, M. S. Al-Saud, A. G. Abo-Khalil, and H. M. H. Farh, "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," *Energies*, vol. 12, no. 9, p. 3652, May 2019.